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ABSTRACT 
This paper deals with simulation modeling of nonlinear, 
deterministic, continuous systems. It describes how the 
Simulation Problem Analysis and Research Kernel 
(SPARK) uses the mathematical graph both to describe 
models of such systems, and to solve the embodied 
differential-algebraic equation systems (DAEs).  Problems 
are described declaratively rather than algorithmically, with 
atomic objects representing individual equations and macro 
objects representing larger programming entities 
(submodels) in a smooth hierarchy.  Internally, in a 
preprocessing step, graphs are used to represent the problem 
at the level of equations and variables rather than 
procedural, multi-equation blocks. Benefits obtained include 
models that are without predefined input and output sets, 
enhancing modeling flexibility and code reusability, and 
relieving the modeler from manual algorithm development. 
Moreover, graph algorithms are used for problem 
decomposition and reduction, greatly reducing solution time 
for wide classes of problems.  
After describing the methodology the paper presents results 
of benchmark tests that quantify performance advantages 
relative to conventional methods. In a somewhat contrived 
nonlinear example we show O performance as opposed 

to for conventional methods and O  for sparse 
methods. Another more realistic example deals with the 
model of a complex air-conditioning system. Comparative 
results show the number of simultaneous equations was 
reduced by a factor of 4 and the execution time reduced by a 
factor of ~15-20 when compared to a popular simulation 
program for problems in this domain. Both of these 
examples offer good opportunities for decomposition and 
reduction. A third example treats two dimensional heat 
transfer in homogeneous media. In this case the lack of 
opportunity for decomposition and reduction results in a 
still-large and sparse iterative problem. However, even for 
this example a sparse option within SPARK yields solution 

speeds comparable to a custom coded solution using state-
of-the-art sparse packages. 
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Finally, we describe recent extensions that allow developers 
to mix SPARK’s graph-theoretic modeling paradigm with 
conventional procedural methods.  
BACKGROUND 
We are concerned here with enhanced modeling flexibility 
and solution efficiency of systems of nonlinear DAEs. Such 
equation systems, which are deterministic rather than over- 
or under-determined, arise in nearly all engineering and 
scientific analysis, but perhaps most notably in simulation 
of physical and biological systems. Rather than the 
conventional vector-matrix representation, the methodology 
discussed here relies upon the mathematical graph, i.e., a set 
of nodes connected by a set of edges, as the principal data 
structure for both model representation and solution. While 
this is not the first time graph theory has been used in 
connection with equation system solving, previous graph 
theory usage has been, most often, as an aid in sparse matrix 
manipulation. In the work reported here, graph-theoretical 
methods are applied directly to the nonlinear equations. 
Thus the graph, rather than the matrix, is the primary 
structure for storing the problem structure and data, and 
graph algorithms are employed to determine a solution 
sequence, operating directly on the nonlinear equations. 
Moreover, the model equations are stored individually, 
rather than packaged into modules at run time, and treated 
as equations, rather than as formulas with assignment 
(algorithms). Simultaneous equations manifest as cyclic 
graphs that are dealt with by iteration, but, importantly, the 
size of the iteration vector is reduced through use of a cutset 
reduction algorithm. Moreover, the problem graph is 
decomposed into strongly connected components, providing 
a very powerful divide-and-conquer mechanism. Since 
simulation is often applied to engineered system comprising 
discrete components interconnected in sparse networks, the 
equation sets produce sparse graphs that are often 
susceptible to such reduction methods. Equation inverses 
are found beforehand using symbolic manipulation 
(computer algebra) software.  
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The SPARK project at The Berkeley Lab is based on work 
carried out at the IBM Los Angeles Scientific Center in the 
early 1980s (Silverman, Jurovics et al. 1981; Sowell and 
others 1984; Sowell, Taghavi et al. 1984; Levy and Low 
1988). The first implementation at The Berkeley Lab, called 
SPANK, was by Jeffery Anderson (Anderson 1986), 
working with Edward F. Sowell, Walter F. Buhl and others. 
The basic graph-theoretic ideas, e.g., matching on bipartite 
graphs and cutting digraphs, came directly from 
contributions to the IBM project by Hanoch Levy and David 
Low. There is a remarkable, yet coincidental, similarity 
between the IBM work and that of Edwards (Edwards 
1982), which was going on at approximately the same time. 
GRAPH-THEORETIC BASIS 
The process that leads eventually to numerical solution 
begins with graph-theoretic analysis of the problem, carried 
out in several stages. The objective of the first step, 
matching, is to select an appropriate equation to calculate 
each problem variable. To accomplish this, equation objects 
and problem variables are represented as the two disjoint 
node sets of a bipartite graph (bigraph), Figure 1. 

 

Figure 1 Matching 
The upper nodes represent equations while the lower 
represent variables. Each edge incident upon an equation 
node indicates the existence of an inverse defined for the 
connected variable node in this equation. When viewed in 
this way, the selection of an equation for each problem 
variable is a matter of finding a complete matching on the 
graph, as indicated by the bold edges in the figure. There are 
several well-known bipartite matching algorithms (Hopcroft 
and Karp 1973; McHugh 1990). Upon completion of the 
matching there is a one-to-one relationship between 
equation objects and problem variables. Also, the matching 
identifies the particular inverse needed for each equation, 
e.g., E1 needs to be solved for where is 
an inverse of equation E1. The simulation environment 
includes symbolic tools for automatic generation of inverses 
for algebraic equations. If an inverse cannot be found for a 
particular variable in an equation, that edge can be omitted 
from the bigraph, thus preventing a matching requiring it. 
Since there are often many possible matchings for the 
bigraph, a suitable one is usually found, but if not an inverse 
can be specified in residual form, thus forcing the target 
variable to be a break variable (see below). 
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Subsequent processing steps require another graph to 
represent the problem. A directed graph (digraph) is formed 
in which there is a node for every problem variable. 

Keeping in mind that every variable is now associated with 
a particular equation, the selected equation is also associated 
with the node, e.g., E1 is associated with the y node in the 
above example. Each node can then be thought of as 
producing a value for the associated variable using the 
matched inverse equation. Directed edges are added to the 
graph showing dependency. Thus, Figure 2 derives from 
Figure 1.  

 

Figure 2 Digraph 
The graph in Figure 2 is a simple, acyclic digraph that leads 
directly to a solution sequence; the nodes need only be 
“fired” in topological order1.  More commonly, scientific 
problems involve equation sets that require simultaneous 
solution. Such problems produce graphs with closed circuits 
or cycles, e.g., Figure 3, requiring more graph-theoretic 
processing to get a solution sequence. 
The graph in Figure 3 has an obvious property other than 
circuits, and that is strongly connected components, or 
strong components for short. These are maximal sets of 
nodes and edges in which every node can be reached from 
every other node. See (Aho, Hopcroft et al. 1983). These are 
circled with dashed lines in the figure. 

 

Figure 3 Cyclic digraph. 
The importance of this characteristic in the current context 
is each strong component represents a subproblem that can 
be solved separately. Thus the strong component at the 
lower right, SC1, can be solved by itself, followed by 
solution of SC2. Discovering this structure in the problem 
graph is called strong component decomposition, for which 
there are well known algorithms, including one based on 
depth first search (Aho, Hopcroft et al. 1983). This 
algorithm is performed in SPARK as the first processing 
step of the digraph.2 Fortuitously, the same algorithm also 
numbers the components in the order in which they must be 
solved, e.g., SC1 followed by SC2 in the example. 
By the strict definition of a strong component, any node that 
is not in a cycle is itself a strong component. For example, 
Figure 2 has three strong components in this formal sense, 

                                                           
1 Visit order in which all predecessors are visited first. 
2 Strong component decomposition is equivalent to reducing 
a matrix to block diagonal form. 

 



although none have cycles. Acyclic groups of such 
degenerate strong components can also occur as parts of 
more complex graphs having cyclic strong components 
elsewhere. SPARK is able to recognize these structures and 
treat them as “acyclic components” for computational 
efficiency. That is, they are solved as a group, but 
sequentially rather than iteratively. 
Once decomposed into components each cyclic component 
is processed with a cutset algorithm. A cutset is defined here 
as a set of nodes that, if removed, would break all cycles in 
the component. Cutsets are not unique. Indeed, the set of all 
nodes is a cutset, albeit a large one. While finding the 
minimum cutset is known to be an NP-complete problem, 
there are several good algorithms for finding relatively 
small cutsets (Levy and Low 1988). 
The numerical solution sequence for a component with a 
non-zero cutset requires iteration. This is accomplished by 
“cutting” the graph at each cutset node. This can be viewed 
as inserting a new fictitious node to which the “from” end of 
all edges leaving the cut node are connected, thus leaving 
the cut node output disconnected. This is exemplified in 
Figure 4 where T is the cut node and T’ is the fictitious 
node. This creates an acyclic graph that can be processed in 
topological order, just as in the Figure 2 example. Estimated 
values for the cut node variables are fed into the graph as 
inputs to the fictitious node and the graph is “fired,” i.e., 
traversed in topological order executing the inverse 
associated with each node.  In other words, the acyclic 
graph allows a residual to be calculated for each cut variable 
using the associated inverse. The cut digraph can thus be 
viewed as a vector-valued function of the input cutset, i.e., 

)(xgx ′= , which allows us to construct a conventional 
Newton-Raphson solution process, iterating until the change 
in each variable between successive iterations becomes 
smaller than the prescribed relative tolerance. 

 

Figure 4 Cut digraph 

Summarizing, the described graph-theoretic methodology 
comprises the following steps: 

1. Construct and match a bipartite graph to identify an 
equation for each problem variable. Symbolic 
software is used to find the needed inverse of the 
matched equation. 

2. Construct a digraph based on the matching. 
3. Decomposition in to strong components, possibly 

acyclic as well as cyclic. 

4. Find small cutset and construct N-R iterative 
problems for each cyclic component  

5. Process all components in topological order. 
HIERARCHICAL MODELING  
Although SPARK operates at the equation level for graph-
theoretic processing, and at run time, this level is not 
convenient for the modeler. Instead, a hierarchical language 
is provided. The basic modeling entities are atomic classes 
that represent individual equations, and macro classes that 
represent larger entities by incorporation of atomic classes 
and other macro classes. Both atomic and macro classes 
have ports that are linked together by the user with a simple 
network language to form larger models, such as macro 
classes and problems. This allows top down design in terms 
of models of major system components, followed by bottom 
up implementation.  This hierarchy is flattened to equations 
and variables for processing as described in the previous 
section. 
The user develops mathematical models for physical 
components in terms of equations, rather than algorithms. 
Each equation is written as an atomic class. C++ functions 
represent all feasible, explicit inverses of each equation, as 
well as those for which only residual form is possible; these 
inverses become part of the class. Atomic class ports 
include all variables that are present in the equation, with no 
distinction as to input or output. A symbolic tool can be 
used to automatically create an atomic class from an 
equation. 
Macro classes, formed through composition from atomic 
and other macro classes, represent higher-level component 
models.3 That is, the user defines a macro class by declaring 
instances of atomic classes and other macro classes, and 
linking them at their ports. Macro class creation is also 
automated with symbolic tools. 
Both atomic classes and macro classes can be saved in 
libraries for reuse.  
Because neither inputs nor outputs are designated in the 
class definition, we have input/output free or multilateral 
models. That is, the direction of computation is arbitrary. 
Being comprised of atomic classes, macro classes are also 
multilateral. As a result, which variables are inputs and 
which are calculated is not resolved until the overall 
problem is defined. At that time, the wanted input set is 
specified by a keyword in the network language. Thus, 
within the mathematical limits of requiring a well-posed 
problem, one does not have to redesign the entire model in 
order to change from solving for x given p to solving for p 
given x. 

                                                           
3 SPARK is based on classes and objects, but does not 
support conventional OOP inheritance. 

 



DYNAMIC MODELS 
What we have described above is a modeling language and 
solution strategy for algebraic problems. However, the ideas 
are readily extended to dynamic problems. The most 
straightforward extension is to introduce a new problem 
variable for the derivative  of every dynamic variable x, 
and declare an integrator object that relates x and . 
Integrator objects are instances of classes that access saved 
histories of the dynamic variable, and employ them 
according to well-known numerical integration formulas, 
open or closed. This approach was described by Sowell and 
Buhl (Sowell and Buhl 1988). More recently, more 
elaborate built-in integration methods have been added to 
SPARK in order to afford proper error control. For example, 
VisualSPARK 2 implements the Euler and the Trapezoidal 
integration methods with support for local error control 
through adaptive time stepping. These are described in the 
SPARK User’s Manual (Sowell 1998), and more recent 
online documents (

x&
x&

http://simulationresearch.lbl.gov). 
IMPLEMENTATION 
In the current SPARK implementation, the problem 
definition is first processed by the parser, scattering all 
macro objects into atomic objects and generating a flat 
problem representation in a file. All graph-theoretic 
processing is done in a second step called setup. The setup 
program emits a C++ source file in which the entire problem 
solution sequence, and all parameters, is embedded in data 
structures. The highest-level structure in this file is an 
instance of a C++ class called Problem. The Problem class 
has an array of Component objects, each of which contains 
the solution sequence for one of the strong components of 
the graph. This sequence is basically a list of pointers to 
functions representing the selected atomic object inverses at 
each node. The file is compiled, as are any new atomic 
classes, and everything is linked with a fixed library (or at 
run time with a dynamic link library) containing the fixed 
elements of the solver. The output of the link step is an 
executable that solves the problem numerically by stepping 
through the list of components, and through the solution 
sequence within each component. A component with cycles 
is converged with Newton-Raphson iteration on the cutset 
vector. There is a time loop to repeat the process if the 
problem is a dynamic one. 
There are several other ways the concepts described 
previously could be implemented. We have experimented 
with interpretive implementations, eliminating the need for 
problem compilation and linkage entirely. Recently, a 
“dynamic” building mechanism has been added to 
VisualSPARK 2 in which the static loading mechanism 
based on the C++ source file is completed at runtime.  This 
technique allows SPARK to operate without a C++ compiler 
and linker, as long as all atomic classes are compiled 
beforehand and placed in DLLs. This approach improves 

productivity during model development with a modest 
reduction in runtime efficiency.  
SYMBOLICS 
A basic assumption in the methodology is the availability of 
at least one, and preferably more, inverses for the equation 
represented by each atomic class. This is needed for the 
matching process to succeed. Obtaining explicit inverses for 
the equations usually requires no more than high school 
algebra, but still can be tedious if there are many classes to 
be developed. Fortunately, computer algebra tools, e.g., 
Maple and MACSYMA, are now commonly available to aid 
in this task. SPARK comes with a free symbolic tool called 
sparksym, based on a licensed shareware program called 
Mathomatic, that allows the user to automatically construct 
not only the inverses but also the entire atomic class based 
on an entered equation. Macro classes can also be 
constructed by sparksym.  Although the Mathomatic-based 
tool is limited to relatively simple equations, it may be 
sufficient for many users. If more powerful tools are needed, 
either Maple or MACSYMA can be installed and optionally 
used as the symbolic engine in sparksym.  
USER INTERFACES 
SPARK can be executed at the command line, or through 
graphical user interfaces. At the command line one uses a 
conventional text editor to create class and problem files. 
Then a single command carries out the parsing, setup, 
compilation and linkage steps. The symbolic tools can also 
be executed at the command line to automate creation of 
new classes. Graphical user interfaces, on the other hand, 
provide the user with an integrated development 
environment (IDE) in which problems and classes can be 
created, built and executed. The symbolic tools are also 
available within the IDE.  
There are two such IDEs, one that comes with VisualSPARK 
released by The Berkeley Laboratory 
(http://simulationresearch.lbl.gov), and another that comes 
with WinSPARK released by Ayres Sowell Associates, Inc. 
(http://www.ayressowell.com). The two interfaces reflect 
different developmental heritages, with WinSPARK 
exhibiting more of the look and feel of Microsoft Windows, 
and VisualSPARK that of Unix, although the latter has been 
ported to Windows. Ostensibly, both packages have the 
same SPARK core, but in practice the two products 
sometimes get out of synchronization, with differences 
among newer features. Documentation for both products is 
available online. 
PERFORMANCE BENCHMARKS 
In addition to the advantages already noted, e.g., a 
declarative hierarchical modeling style and multilateral 
object-based models, the graph-theoretic modeling 
paradigm also offers a significant performance advantage 
over conventional and sparse methods for some problem 
classes. In our benchmarking work we have attempted to 
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show asymptotic performance of the methodology, as 
implemented in SPARK, and to compare it to the more 
commonly used sparse matrix methods and other simulation 
software. Like any such effort, our study was limited by 
time and resource constraints. With these constraints in 
mind, we chose problems representative of both those well 
suited and those poorly suited to the methodology, as well 
as one real-world problem for which the performance of 
another simulation program was available from earlier 
work. Naturally, we used software conveniently available to 
us for comparison. While not exhaustive, we feel that these 
benchmarks are sufficient to show, at the least, the promise 
of the methodology. Here we only summarize these studies 
and results, which have been more fully reported elsewhere 
(Sowell and Haves 2001). 

A Good Problem for the Methodology 
The first benchmark problem was selected to represent 
problems well suited to the graph-theoretic methodology. It 
derives from a problem in the SPARK Users’ Manual 
consisting of four highly nonlinear equations.  For the study, 
this set of equations was implemented as a SPARK macro 
class, which was then instantiated n/4 times to get a problem 
of size n. Obviously, every instance is then a separately 
solvable problem, although all are presented to SPARK as a 
single problem. SPARK is able to discern this structural 
regularity from the problem graph and partition it into n/4 
strongly connected components. It develops that each has a 
cutset of size 1.  Consequently, during the numeric phase of 
the solution, n/4 single-variable iterative solutions are 
carried out.   
For comparison purposes, this equation set was also solved 
with three other methods.  First, a Newton-Raphson 
nonlinear solver nlsolve was handcrafted for this equation 
set, with the problem size as an input parameter.  In this 
solver, the four equations were coded in a single function 
that was called as needed for calculation of the residual 
functions and the Jacobian.  The matrix functions from 
SPARK were used to calculate the Jacobian numerically and 
solve the linear set for new estimates of the iteration 
variables.  Second, a sparse Newton-Raphson solver 
spnlsolve was written using the sparse LU solve function 
from the Meschach sparse matrix package (Stewart and 
Leyk 1994).  Comparative run times are shown in Figure 5.  
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Figure 5 Comparative run times 

As would be expected, the experimental results show 
performance for the full matrix solution.  The solver 

based on the Meschach sparse matrix functions shows much 
better performance, approximately .  Also as 
expected, SPARK is much better than the sparse 
implementation, showing about O . In order to confirm 
that these dramatic solution speed improvements are not 
attributable to the particular sparse package chosen, this 
problem was also coded for solution with the SuperLU 
sparse package (Demmel, Gilbert et al. 1999). If not the 
most advanced software in this category, it appears at least 
to be among the most current. The upshot of the results 
(Sowell and Haves 2001) is that although SuperLU is 
considerably faster than Meschach (15 seconds. versus 48 
seconds for n = 2000), SPARK is still much faster.  More 
importantly, it is clear that SuperLU, like Meschach, is 
performing at O  as compared to  for SPARK.  
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A Poor Problem for the Methodology 
The second benchmark problem, purposely chosen not to be 
well suited to the graph-theoretic methodology, is Laplace’s 
equation in two dimensions.  This equation, among other 
things, models heat transfer in a thin, square plate with a 
uniformly distributed heat source and uniform boundary 
temperature.  The problem is discretized by dividing the 
square into a uniform grid of specified size.  Each cell in the 
grid is represented by a nodal temperature T  and is 
governed by a heat balance equation  
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where jsiq ,  is the heat source rate per unit surface area.  
The internodal conductance is assumed to be 1. This 
problem was coded for solution with Meschach using sparse 
LU factorization.4 For comparison, a program was written 
to generate SPARK problem and input files for the same 
equation system.  The grid size was varied between 3 and 
45, yielding equation set sizes between 9 and 2025.  Both 
SPARK and the Meschach-based solver were compiled with 
the same compiler and optimization options. Also, care was 
taken to be sure that the same problem, in terms of equation 
count and math operations, was being solved in both cases. 
Then, because we knew this problem provided little 
opportunity for reduction or decomposition, the SPARK 

                                                           
4This choice was made since Cholesky factorization and 
sparse conjugate gradient iteration applies only to 
symmetric positive definite matrices, a condition satisfied 
by the Laplacian but not often found in general simulation 
problems 

 



solver was modified to optionally use either sparse or non-
sparse vector-matrix data structures and functions from 
Meschach when updating the solution vector.  The results 
showed that while Meschach outperformed the standard 
version of SPARK, a version with sparse handling of the 
reduced Jacobian performed essentially the same as 
Meschach (Sowell and Haves 2001).5 

A Real World Problem 
Going beyond the rather contrived examples above, the 
graph-theoretic methodology was also evaluated by 
modeling an airflow system employing discrete-time 
controllers.  The example used was a typical air-
conditioning airflow network and its associated control 
loops, a problem involving significant computational burden 
(Haves, Norford et al. 1998). A number of steady state 
component models were implemented as SPARK objects, 
including variable speed centrifugal fans, flow diverters, 
flow mixers and control dampers. In modeling air flow, a 
square law dependence of total pressure drop on flow rate 
was used above a critical flow rate and a linear dependence 
was used below the critical flow rate to avoid known 
computational problems when the assumption of turbulent 
flow is applied to low flow rates.  Dynamic models included 
flow sensors, pressure sensors, discrete-time proportional-
plus-integral (PI) controllers and rate limits in fan speed 
controllers. In order to assess the benefits of using SPARK 
methods, a base case and two reference cases were 
constructed.  The base case was modeled with SPARK in 
the normal manner, allowing the graph-theoretic techniques 
to perform reduction of the problem graph.  The two 
reference cases were (a) The system modeled using the 
HVACSIM+ program (Clark 1985), and (b) the system 
modeled using SPARK, but inhibiting the normal problem 
reduction techniques. The use of the two reference cases 
enables the benefits of the graph-theoretic techniques to be 
separated from the effects of program architecture.  For all 
three cases, the simulation problem was a series of set-point 
changes for each controller followed by a disturbance 
caused by progressive closing of the variable volume 
terminal boxes. In addition to these comparisons directed at 
assessment of the importance of reduction, a side study was 
performed to determine whether “breaking” of control loops 
offers computational advantage.  The interest in this derives 
both from the need to model sample-and-hold in discrete-
time controllers, and from the introduction of artificial 
delays as a computational device to speed solution.  Results 
are shown in Table 1. 
 
 

                                                           
5 The current version of VisualSPARK offers a sparse 
option. 

Table 1Results for air-conditioning system 

Time (s) Iteration Variables Control 
HVAC
SIM+ 

SPARK HVAC
SIM+ 

SPARK 

Intact 1135 48.8 62 15 
Broken 785 52.7 55 15 

In the first comparison, “Control loops Intact,” the flow 
network equations and the controller equations are solved 
simultaneously.  The main result is that SPARK is 15 - 20 
times faster than HVACSIM+.  The obvious reason for the 
speedup is that SPARK achieves a 4:1 reduction in the 
number of variables in the iteration vector relative to the 
conventional program. In the second comparison, “Control 
loops Broken,” the set of simultaneous equations 
representing the airflow network and those representing the 
control system are solved sequentially. This corresponds to 
breaking the algebraic loops, e.g., by introduction of a 
sample-and-hold in the controller or an artificial delay.  
Whereas a significant benefit was gained from breaking the 
control loops when using HVACSIM+, there was no such 
benefit when using SPARK.  The reason for this, as 
discussed in another paper (Haves and Sowell 1998), is that 
SPARK finds two break variables that not only break the 
two control loops but also break other computation loops, so 
the control loops are broken regardless. 
Table 1 shows results for a particular flow network.  
Experiments with a number of different flow network 
configurations show that SPARK achieves similar 
reductions in problem size across a range of different 
network topologies typical of fluid distribution systems.  
This suggests that the application of the problem reduction 
methods used in SPARK to such problems will result in 
increases in computational efficiency similar to those 
reported here. 
DISCUSSION 
The above results confirm that the graph-theoretic 
methodology offers significant reduction in solution times 
relative to both conventional and sparse matrix methods in 
the solution of certain kinds of nonlinear equation systems. 
This is borne out most dramatically by the contrived 
nonlinear benchmark problem, but is also quite clear from 
the air-conditioning control application.  However, in the 
case of the example involving Laplace’s equation, we 
observe that without using sparse methods itself, SPARK 
has difficulty competing with sparse solvers. Understanding 
why this occurs is important in order to guide improvement 
of the graph-theoretic methods, and to delineate properly the 
class of problems where one should expect the most 
dramatic improvements with them. 
To understand the observed differences in run times, it is 
important to note that at the heart of the Newton-Raphson 
nonlinear solution process is the solution of a linear system 
in order to get the correction vector for iteration variables. 

 



In general, this is an O  process.  Even with sparse 

methods it is typically O . Consequently, anything that 
can be done to reduce the size of the iteration vector has a 
powerful effect, especially for large problem size. SPARK 
does exactly this in two separate ways: strong component 
decomposition and cutset reduction.  Decomposition is 
possible when the equation set turns out to be a sequence of 
separately solvable problems.  SPARK routinely detects this 
property and carries out the decomposition without user 
intervention or custom coding.  For example, the nonlinear 
benchmark problem with 100 equations and variables is 
decomposed into 25 subproblems each of size 4.  This alone 
would reduce the run time by a factor of 625.  Cutset 
reduction refers to reducing the sizes of the iteration vectors 
(and Jacobians) within the subproblems.  Since a cutset of 
size 1 was discovered in each component of our example, 
the iteration vectors are all of size 1, so the overall 
theoretical run time reduction is by a factor of 40,000.  Of 
course, the theoretical efficiency gain is only partially 
realized due to overhead, but this analysis clearly explains 
the observed excellent performance for the Good and Real 
examples above.  It also explains why we should expect 
little or no advantage for the Poor example. Highly 
interconnected problems like this one offer no opportunity 
for decomposition, and make cutset reduction much more 
difficult. But since many real simulation problems have 
portions that are poor in this sense, as well as sparsely 
connected portions that are ideal for graph-theoretic 
methods, the challenge is to be sure that the graph-theoretic 
implementation at least does no worse than conventional 
sparse methods in the Poor parts of the problem. 
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It should also be noted that while reduction to block 
diagonal form, which is equivalent to strong component 
decomposition, can be done with sparse matrix packages, 
and is indeed done in some nonlinear equation solvers 
(Klein 1991), one should not assume that it is routinely done 
by all sparse solvers. Moreover, we are aware of no 
nonlinear solver other than SPARK that routinely does 
iteration vector reduction by use of small cutsets, in spite of 
the fact that the concept is well known, at least in the 
theoretical sparse analysis community. The reasons for this 
apparent lack of widespread use of these important 
techniques may be complications attendant to the vector-
matrix problem formulation commonly used in nonlinear 
solvers. We know for certain, on the other hand, that when 
the nonlinear problem is represented directly as graphs at 
the equation-variable level, routine application of the 
techniques is more or less intuitive, and the algorithms are 
straightforward. 
MIXED PARADIGMS 
SPARK is only one example of how the graph-theoretic 
modeling paradigm can be implemented.  Many others 
applications of the paradigm are conceivable, including 

“mixed paradigm” projects in which graph-theoretic 
methods are used in some places while procedural methods 
are used in others. To enable such usage, recently Ayres 
Sowell Associates has implemented modifications to make 
SPARK internal methods directly accessible to model 
developers in non-SPARK environments. With one feature, 
called SPARK Model Functions (SMF), developers can 
create SPARK system models of arbitrary size and 
complexity that can be called as ordinary functions by 
foreign executive programs. WinSPARK menus provide 
tools that automatically generate SMFs, placing them in 
DLLs for easy runtime access by other software. As a 
demonstration of possible usage, we have created a DLL 
that integrates with Microsoft Excel, thus providing SPARK 
generated models as custom user functions in this 
ubiquitous application (Sowell and Moshier 2003). Another 
example of using SPARK as a calculation kernel provides a 
link between SPARK and the EnergyPlus program. 
Individual EnergyPlus components are implemented as 
SPARK problems, and each such problem is instantiated 
and invoked at runtime on demand using the atomic class 
DLLs. (See SPARK Problem Driver API documentation at 
http://simulationresearch.lbl.gov/) 
Another feature, called Multi-Value Objects (MVOs), allows 
a developer to use a foreign procedural function within a 
SPARK model. This is useful when the there is a legacy 
model written in perhaps FORTRAN, C, or C++ and time or 
other factors argue against re-implementation as an 
equation-based SPARK macro class. MVOs are also very 
useful when there is a set of equations within a system that 
are numerically problematic for a global solver, but which 
can be reliably solved simultaneously with well-known 
procedural algorithms. In both situations, there are multiple 
equations being solved for multiple variables 
simultaneously within the procedural model, in contrast to 
the SPARK policy of working with the individual equations 
and variables, solved globally. In WinSPARK, the MVO is 
treated as a macro object when developing the SPARK 
problem definition, but at run time the procedural function 
is invoked, returning any number of values to be propagated 
through the problem graph exactly like values calculated in 
the normal manner. WinSPARK offers symbolic tools to 
automatically generate MVOs. An alternative MVO 
implementation is used in VisualSPARK. 
CONCLUSIONS 
The principle conclusion that can be drawn from this work 
is that graph-theoretic techniques, as implemented in 
SPARK, can outperform conventional and sparse matrix 
methods for solution of problems that can be decomposed 
and/or reduced.  Roughly speaking, execution time savings 
will be O  where r is the ratio of the largest strong 
component cutset size to the number of equations in the 
problem, and m is the number of strongly connected 
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components into which the problem partitions.  The 
reduction techniques produced close to the maximum 
reduction in the benchmark air-conditioning problem, and 
there are indications that similar reductions can be expected 
in the broad class of problems involving flow networks and 
their associated control systems.  Reductions in execution 
time of more than an order of magnitude can be expected 
relative to full-matrix solvers such as HVACSIM+.  While 
direct benchmarks were not carried out for simulators of 
flow networks that use sparse solvers, our indirect tests 
suggest that the sparse methods employed in such programs 
will not be comparable to SPARK for problems in this class. 
This is because sparse packages such as SuperLU do not 
automatically perform decomposition or reduction, 
notwithstanding the fact that handcrafted solvers based on 
sparse methods should be able to do so.  On the other hand, 
problems characterized by a high degree of 
interconnectivity, such as energy, mass, or momentum 
transport in homogenous media, allow very little reduction 
and therefore are not prima fascia candidates for graph-
theoretic solution methods. However, since the reduced 
Jacobian in homogeneous transport problems is still very 
sparse, conventional sparse matrix methods can be 
beneficially applied after decomposition and reduction.  
When this is done, the graph-theoretic solution method can 
be competitive with sparse solvers even for homogeneous 
transport problems, and probably superior for system 
simulations in which reducible and homogeneous transport 
components must both be solved. 
In addition to performance improvements, the graph-
theoretic paradigm allows convenient hierarchical, equation-
based modeling. Additional benefits include input/output 
free models, meaning that the model does not have to be 
altered just because the input set changes, and relieving the 
modeler from the burden of algorithm development. 
Finally, we call attention to several ways that the graph-
theoretic methodology used in SPARK can be incorporated 
in other modeling environments. In particular, SPARK 
models can be incorporated into non-SPARK environments, 
and vice versa. 
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